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A B S T R A C T   

Specification of how selectivity (the combination of availability and vulnerability) is modelled in integrated stock 
assessments is key to avoiding bias in estimates of quantities of management interest. Many “rules of thumb” are 
common in the community but these have yet to be rigorously tested. This paper uses simulation to compare 12 
approaches for specifying selectivity in an age-structured integrated stock assessment, including parametric and 
non-parametric approaches. The operating model represents a two-fishery case where selectivity for one or both 
fisheries can be dome-shaped and/or time-varying. The results suggest that using AIC to select among selectivity 
forms is not robust, including when model misspecification is absent, even though the use of model selection 
criteria such as AIC is common when conducting stock assessments. The use of double normal selectivity was 
found to be most robust to uncertainty in the true form of selectivity. Estimation of time-variation in selectivity 
did not lead to appreciable improvements in performance when the true time-variation was random. The double 
normal form performed poorly if M was estimated along with the other model parameters. Similarly, use of 
flexible parametric methods, such as splines, performed adequately with informative data, but poorly when the 
catch series exhibited low contrast and age-composition data were not available from the start of the fishery. This 
suggests that the best practices for selectivity will depend on knowledge of the likely information content of the 
data.   

1. Introduction 

Integrated approaches to stock assessment play a vital role in the 
provision of scientific advice for the management of fish and inverte
brate stocks around the world. These approaches utilize multiple data 
sources in a single analysis. They combine three nested models—one for 
the population dynamics, one for the observation process, and one for 
the sampling distribution for the data (Maunder and Punt, 2013). The 
application of integrated approaches since their introduction by Four
nier and Archibald (1982) now spans many stocks and jurisdictions. 
Punt et al. (2020) outline some best practices for developing the next 
generation of integrated analyses for stock assessment. 

The integrated approach performs better when composition data (e. 
g., age-composition, length-composition, and/or conditional age-at- 
length data) from fishery-dependent and -independent sources are 
used to inform the values of the parameters of the population dynamics 
and observation models. The contribution of each composition datum, 
relative to its various sources and other types of data, relies on a 

weighting factor characterized as the effective sample size (Punt et al., 
2021). Punt et al. (2021) demonstrated that, while higher effective 
sample sizes for length-composition and conditional age-at-length data 
resulted in smaller errors when estimating key management quantities 
(i.e., spawning biomass, depletion, recruitment, population model pa
rameters, catch limit recommendations), effective sample size is often 
not the main factor that determines the magnitude of estimation errors. 
Overly simple selectivity formulations are a gross approximation to the 
many factors influencing a fishery’s time-varying interaction with a 
population of fish (Maunder et al., 2014), and violations can lead to bias 
and imprecision when estimating quantities of management interest 
(Maunder and Punt, 2013). 

1.1. Selectivity and estimation methods 

Stewart and Martell (2014) define selectivity as length- or age-based 
probabilities used to link observed composition data to model pre
dictions about population abundance-at-age/-size. Selectivity is a 
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combination of two processes: availability (i.e., the probability that a 
fish of a specific age or size is in the same vicinity at the same time as 
gear deployment) and contact (or gear) selectivity (i.e., the relative 
probability that a fish of specific age or size is caught given it is available 
to the gear) (Sampson, 2014; Stewart and Martell, 2014). Fish or 
invertebrate life history characteristics and spatial patterns in fishing 
intensity can lead to different functional forms for the availability and 
vulnerability of a stock (Sampson and Scott, 2011). Selectivity is typi
cally represented by three forms: monotonically decreasing such that 
juveniles are most selected, dome-shaped for intermediate ages, and 
monotonically increasing for adults (Bence et al., 1993). Analysts can 
select from various parametric selectivity formulations (i.e., patterns or 
forms): double normal, logistic, or cubic spline (see descriptions in Ap
pendix A), among many others. Thorson and Taylor (2014) evaluated 
the performance of commonly used statistical models for estimating 
selectivity in age-structured integrated approaches: (a) parametric 
models, which estimate selectivity using a range of parameters, depen
dent on the complexity of the population dynamics model; (b) flexible 
parametric models, such as splines which estimate selectivity using an 
informative and explicit prior function, that can be updated by the 
available data when predicting future observations; and (c) 
non-parametric models, which estimate selectivity by age and penalize 
large fluctuations in selectivity between ages. Thorson and Taylor 
(2014) found that flexible and non-parametric models perform well (e. 
g., less bias and greater precision) when fishery selectivity does not 
follow a parametric function. However, these studies still leave some 
challenges and ambiguity regarding the best approach to use. For 
example, previous studies only examined a limited set of the factors that 
determine the performance of estimation methods and did not consider 
estimation of catch limits under harvest control rules. 

1.2. Challenges and best practices for modelling selectivity 

The model structure selected to relate selectivity and composition 
data impacts assessment outputs and the resulting management advice. 
Modelling selectivity using complex functional forms and time-varying 
parameters presents challenges because the model structure may: a) 
exceed the amount of information available in the composition data and 
b) require many parameters and result in unexplainable predictions, 
high correlations, and increased uncertainty (Hulson and Hanselman, 
2014). Modelling selectivity for fishery-dependent and -independent 
sources is also not immune to misspecification, a common disadvantage 
for integrated approaches (Maunder and Punt, 2013). Misspecifying 
selectivity can result in data conflicts in integrated analyses (Ichinokawa 
et al., 2014), and Crone and Valero (2014) found that estimates of 
maximum sustainable yield and current biomass were sensitive to mis
specification of selectivity when models are fitted to length-composition 
data. 

Best practices for selecting an appropriate selectivity form and esti
mation method that minimize these challenges depends on the desired 
management objective (Maunder et al., 2014). Thorson and Taylor 
(2014) suggested flexible and non-parametric selectivity forms to di
agnose and account for model misspecification. However, choosing 
complex and flexible selectivity patterns runs the risk of over
parameterization, confounding selectivity and recruitment parameters, 
and large uncertainties—a feature that is suboptimal for forecasts, yet 
useful for developing decision tables because uncertainty is better rep
resented (Martell and Stewart, 2014). Assuming time-varying and 
complex selectivity parameterizations may result in robust assessment 
results for short-lived species, but not for long-lived species (Hulson and 
Hanselman, 2014). When there is spatial pattern in age composition 
data, analysts may use multiple spatially disaggregated fleets with 
unique selectivity to reduce bias for stocks that lack tagging data or 
other methods for estimating movement rates (Hurtado-Ferro et al., 
2014). 

1.3. Study objectives 

This study investigates the relationship between selectivity as
sumptions and the quality of the composition data using simulation. The 
key questions we address in this paper are: a) what are the implications 
for the estimation of quantities of management interest when selectivity 
is misspecified, b) what are costs and benefits of forcing selectivity for at 
least one fleet to be asymptotic, and hence c) what is the most appro
priate default assumption to make about the functional form for selec
tivity (parametric vs. flexible parametric, dome-shaped vs. asymptotic). 
We explore these questions using a two-fishery operating model and 
examine the sensitivity of our conclusions to data quality, which other 
parameters are estimated, catch history, and current stock size. We are 
ultimately aiming to refine the best practice guidelines that arose from 
the CAPAM Selectivity Workshop (Maunder et al., 2014). 

We find these questions to be key points of divergence among stock 
assessment practitioners. In communication with 28 experienced stock 
assessment scientists, co-authors Methot and Punt note two divergent 
patterns. One is that about half of the assessment scientists believe that 
at least one fleet should have asymptotic selectivity in order to improve 
model convergence, despite the understanding that it will lead to bias if 
incorrect. In contrast, other assessment scientists argue that under
standing of the fleet and fish ecology as driving factors could lead to 
dome-shaped selectivity for all fleets. Another notable point of diver
gence is with regard to accepting time-varying selectivity as generally a 
good practice, or not. Here we note that advocates of time-varying 
selectivity were typically experienced with data-rich assessment situa
tions. Our study will attempt to quantitatively elucidate the veracity of 
these alternative approaches. 

We focus on selectivity for fisheries-dependent data sources because 
these data sources are frequently included in stock assessment analyses. 
This study uses a simulation framework to evaluate the performance of a 
Stock Synthesis (SS3) [Methot and Wetzel (2013)] assessment when the 
assumptions of the data-generating model (i.e., operating model) and 
the model used for parameter estimation (i.e., estimation model) are 
altered to reflect common challenges to integrated assessment assump
tions. The simulations are based on three fish life histories. 

2. Methods 

2.1. General structure of the simulation study 

The simulation study involved using an operating model to generate 
pseudo data sets (200 for each of the scenarios; see Supplemental Ma
terials for saturation test results) and applying several estimation 
methods to estimate quantities of management interest. The selectivity 
functions explored represent options most frequently used in SS3. In a 
review of 96 assessments conducted in SS3, 7 used both age- and length- 
based selectivity functions, 79 used only length-based selectivity (44 
double normal, 35 logistic, and 5 cubic spline) and 10 used only age- 
based selectivity (double normal most common, but logistic, cubic 
spline, random walk, and the non-parametric form were also used) (N. 
Klaer, CSIRO Marine and Atmospheric Research, unpublished). 

2.2. Operating model 

2.2.1. Population dynamics 
The operating model is a single-sex, single-area, age- and length- 

structured population dynamics model with two fleets, implemented 
using Stock Synthesis. Li et al. (2021) demonstrate that Stock Synthesis 
and a family of comparable models all produce indistinguishable results 
when configured similarly. Thus, we use Stock Synthesis as both the 
operating model and estimation method because the important issues 
which we are testing are in the model formulation and Stock Synthesis 
has considerable flexibility in this regard. The operating model covers 
26 years, nominally “1982′′ to “2017′′. Table 1 lists the values for the 
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biological parameters of the operating model.1 These parameters are set 
based on the most recent Southern and Eastern Scalefish and Shark 
Fishery (SESSF) assessments for tiger flathead (Neoplatycephalus 
richardsoni), blue grenadier (Macruronus novaezelandiae), and eastern 
school whiting (Sillago flindersi) (Day, 2018a; Castillo-Jordán and Tuck, 
2020; Day, 2018b, respectively). These species were selected to capture 
a range of longevities and variation in recruitment about the 
stock-recruitment relationship. Selectivity as a function of age is 
asymptotic for fleet 1 and dome-shaped for fleet 2 (Fig. 1a-c) for the 
base-case, and modelled using the flexible double-normal pattern 
(Supplementary Appendix A). Some of the scenarios account for time- as 
well as age-variation in selectivity by using a semi-parametric approach 
that multiplies the values for selectivity from the parametric function 
forms by age- and temporally-independent lognormal deviations, with a 
standard deviation of the logarithm of σS(Equation A.4). Following Xu 
et al. (2019), the correlation matrix for the deviations in selectivity 
about expected selectivity is the Kronecker product of a correlation 
matrix for among-age effects and a correlation matrix for among-years 
effects, i.e.: 

Ω = Ω1 ⊗ Ω2 (1)  

where Ω1 = ρ|a1 − a2 |
A and Ω2 = ρ|y1 − y2 |

Y , ρA is the between-age correlation, 
and ρY is the between-year correlation. The deviations apply to ages 1–5 
for the longer-lived tiger flathead and blue grenadier, and ages 1–3 for 
the short-lived school whiting. 

Fig. 1d-g shows the four scenarios related to historical catches by 
area (“increasing-then-decreasing”, “increasing”, “constant”, and 
“decreasing-then-increasing”). Option 1 (Fig. 1d) should be most infor
mative regarding the parameters of the operating model and option 3 
(Fig. 1f) the least informative (option 1 is the base-case for the analyses). 
The values for the parameter R0 (and hence S0) are not taken from the 
stock assessments but rather selected so that 2018 depletion (spawning 
biomass in 2018 relative to unfished spawning biomass) is 0.25 or 0.5 
(see the example trajectories of spawning biomass by area and species in 
Fig. 1h-k). 

2.2.2. Data generation 
The data available to the estimation methods are catches (assumed 

known with negligible error, CV = 0.00001), catch-rate data, and age- 

composition data. The simulated catch-rate data are assumed to be 
log-normally distributed about the model expectations and to be avail
able for all years and both fleets. Age-composition data are assumed to 
be multinomially distributed (as assumed by the estimation method) and 
all ageing is assumed to be exact. The CVs for the index data and the 
effective sample sizes for the age-composition data are varied (see  
Table 2; Section 2.4). 

2.3. Estimation method 

The estimation method is a single-sex and age-structured model 
implemented using Stock Synthesis. Table 1 indicates the parameters 
that are estimated. The values for natural mortality, the parameters of 
the growth curve, and steepness of the stock-recruitment relationship 
are assumed to be known exactly, to allow a focus on estimation of 
selectivity.2 

The extent of bias-correction in the stock-recruitment relationship 
depends on the information content of the data regarding annual 
recruitment (Methot and Taylor, 2011). Methot and Taylor (2011) 
developed an approach for specifying temporally varying 
bias-correction factors for recruitment based on the results of an 
assessment (the “recruitment-bias-ramp” method), and this approach is 
applied here. The estimation method is thus applied four times to 
address both setting of the “recruitment bias-ramp” and the effective 
sample sizes for the age-composition data. This involves:  

1. Applying the stock assessment with no recruitment bias-ramp and 
effective sample sizes equal to the nominal values (those used to 
generate the data).  

2. Applying the algorithm of Methot and Taylor (2011) to determine 
the recruitment bias-ramp. 

3. Applying data weighting procedures; this involves applying algo
rithm T1.8 of Francis (2011) to determine a multiplier for the input 
(stage-1) sample sizes for the age-composition data.  

4. Applying Equation 19 of Xu et al. (2019) to update the value for the 
extent of inter-annual variation in selectivity (if selectivity is 
assumed to be time-varying and the extent of annual variation in 
selectivity is not pre-specified).  

5. Refit the model given the new specifications related to data 
weighting.  

6. Repeat steps 2, 3 and 4 three times to allow the values for multipliers 
to converge for most replicates. 

For this study the stage-1 effective sample sizes for age composition 
match the number of animals whose ages were generated to construct 
the age-composition data. 

2.4. Scenarios 

The scenarios (see the factors considered in the analyses in Table 2) 
relate to the questions identified above and involve seven simulation 
experiments (see Table 3 for a summary of the experiments). The sce
narios are not fully balanced owing to the computational demands of the 
calculations and the need to avoid an overly large amount of model 
output. The bulk of the results are shown for tiger flathead given its 
intermediate values for natural mortality and variation in recruitment 
about the stock-recruitment relationship. 

2.4.1. Experiment 1 
The first experiment examines the impact of the choice of the 

selectivity formulation assumed when conducting the stock assessment 
for the three species. The row “Estimated selectivity form” in Table 2 
lists the six basic selectivity options for a total of twelve selectivity forms 

Table 1 
Values for the biological and fishery parameters of the operating model. The 
values in parenthesis are the ages corresponding to the lengths concerned. An 
asterisk in the first column indicates that the parameter is estimated by the 
estimation method. A + indicates the parameter was estimated only for a subset 
of the simulations.  

Parameter School 
whiting 

Tiger 
flathead 

Blue 
grenadier 

Plus-group age (yr) 9 20 20 
Natural mortality, M (yr− 1)* + 0.6 0.27 0.174 
Length (low age, L1) (cm) 6.7 (0) 30 (3) 9.8 (0) 
Length (high age, L2) (cm) 24.6 (L∞) 55.9 (36) 100.3 (L∞) 
Von Bertalanffy κ (yr− 1) 0.28 0.167 0.226 
Length-at-age CV 0.08 0.106 0.125 
Weight-length intercept (kg/cm3) 0.000132 0.00000588 0.000015 
Weight-length power 2.93 3.31 2.728 
Length-at-50%-maturity (cm) 16 30 63.7 
Maturity slope (cm− 1) 2.0 0.25 0.261 
R0 * Solved for (see text) 
Steepness* + 0.75 0.75 0.75 
σR 0.35 0.6 1 
Annual recruitment deviations 

(1982–2017) * 
N(0, σR) N(0, σR) N(0, σR) 

Selectivity* Depends on the experiment  

1 Taken to be those for females. 2 Experiment 6 involves estimating natural mortality (M) and steepness (h). 
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(A-F3 with six for each of time-invariant selectivity and six with annual 
variation in selectivity in which σS is estimated using Equation 19 of Xu 
et al., 2019; the mathematical specifications for the options are given in 
Supplementary Appendix A). This experiment is based on a spawning 
biomass (depletion) in 2018 of 0.5 relative to unfished spawning 
biomass (close to the target level for SESSF species of 0.48), the 
increasing-then-decreasing catch series, an index CV of 0.3, and an 
effective sample size of 100 for the age-composition data. The remaining 
experiments are based on tiger flathead. 

2.4.2. Experiment 2 
Experiment 2 examines the sensitivity of the results of experiment 1 

for tiger flathead to the shape of the selectivity pattern for fleet 2. 

2.4.3. Experiment 3 
Experiment 3 examines the sensitivity of the results of experiment 1 

for tiger flathead to the depletion of the stock in 2018 and the catch 
history. 

2.4.4. Experiment 4 
Experiment 4 compares the four ways to account for time-variation 

in selectivity for tiger flathead and the base-case selectivity patterns 
(see Table 2; row “Estimating time-varying selectivity”). 

2.4.5. Experiment 5 
Experiment 5 examines how estimation performance deteriorates as 

Fig. 1. Selectivity as a function of fleet and species (upper panels) and the time-trajectories of historical catch by fleet (center panels; the same catch time-series is 
used for all species), and time-trajectories of relative spawning biomass for tiger flathead for each time-trajectory of catch for the base level of selectivity for fleet 2 
(lower panels). The results in the lower panels match the catch series in the center panels (i.e., the catch series in panel d corresponds to the biomass trajectory in 
panel h). The solid symbols on the x-axis in the upper panels indicate the ages for which selectivity is estimated when applying the spline estimation methods. 

Table 2 
Factors considered in the simulation experiments. The options indicated in bold- 
underline typeface represent the base-case analysis.  

Factor Options (bold is base-case) 

Species Tiger flathead; school whiting; blue grenadier 
True selectivity form Fig. 1a-c (base); Logistic (both fleets equal to fleet 1 in 

Fig. 1a-c); double normal for both fleets 
True time-varying 

selectivity 
No; yes (σS=0.4; age and time correlation=0.8) 

Extent of dome-ness for 
fleet 2 

Low dome (SA=0.2); Median dome (SA¼0.5); high 
dome (SA=0.95); Asymptotic 

Catch series Increasing-then-decreasing; increasing; constant; 
high initial 

2018 stock size 0.5B0; 0.25B0 

Index CV 0.1; 0.3; 0.5 
Age-composition effective 

sample sizes 
10; 100; 200 

First year with age- 
composition data 

1; 11; 16 

Estimated selectivity form (A) As for operating model; (B) logistic based on 
double normal for both fleets; (C) spline (five knots; see 
Fig. 1a-c) for both fleets; (D) spline for both fleets but 
scaled; (E) double normal for both fleets; and (F) AIC- 
selected 

Estimate time-varying 
selectivity 

No; yes (σs estimated); σs = 0.2; σs = 0.8 

M and h estimated Neither; M estimated; h estimated; M and h estimated  

3 Selectivity formulation F involves selecting (for each replicate data set and 
separately for the cases in which selectivity is assumed to be time-invariant / 
time-dependent) a selectivity formulation using AIC. 
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the number of years with age-composition data is reduced. Results are 
shown for the four catch series given that estimation performance is 
expected to be sensitive to catch series. 

2.4.6. Experiment 6 
This experiment explores the consequences of estimating, rather 

than “knowing”, the values for natural mortality M, and the steepness of 
the stock-recruitment relationship h. There are four cases: 1) M and h are 
known (the base case); 2) M is estimated and h is known; 3) h is esti
mated and M is known; and 4) both M and h are estimated. 

2.4.7. Experiment 7 
Experiment 7 examines the sensitivity of the results of experiment 1 

for tiger flathead to changing the CV of the index of abundance, and the 
effective sample size for the age-composition data. The analyses are 
based on tiger flathead, the increasing-then-decreasing catch series, and 
assume that the 2018 depletion is 0.5. 

2.5. The performance metrics 

The model outputs (management quantities) used to evaluate the 
implications of different sampling schemes are:  

• the natural mortality rate (if estimated);  
• the steepness of the stock-recruitment relationship (if estimated);  
• the selectivity at age 20 (tiger flathead and blue grenadier) and at age 

9 (school whiting) for the two fleets in the last year with catches 
(2017);  

• unfished spawning biomass (SSB0);  
• the spawning biomass at the start of 2018 (one year beyond the end 

of the assessment); 
• the depletion (spawning biomass at the start of 2018 relative to ex

pected unfished spawning biomass); and  

• the value of the Recommended Biological Catch (RBC) for 2018 
based on the 20–35-48 harvest control rule used (Fulton et al., 2019) 
as the basis for decision making for the SESSF (Supplementary 
Fig. S1). 

The results of the simulations are quantified by the median (over 200 
replicates) of the absolute values of the relative differences between the 
“true” (operating model) and estimated values of the quantities of 
management interest (Median Absolute Relative Errors, MAREs). 

The above statistics quantify how well the parameters and quantities 
of management interest are estimated. The results are also summarized 
in terms of coverage probability, i.e., the probability that the 90% 
confidence intervals estimated by inverting the Hessian matrix for the 
parameters and applying the delta method for derived quantities, 
include the true value of a parameter or derived variable. 

3. Results 

3.1. Experiment 1 

3.1.1. Tiger flathead 
Fig. 2 summarizes the performances of the five alternative forms for 

selectivity and the AIC-selected approach for tiger flathead when 
selectivity is time-invariant in the operating model, and the estimation 
methods make the same assumption (see Supplementary Figs 2a-c for 
results when the estimation model includes time-varying selectivity and 
when selectivity is time-varying in the operating model). Apart from the 
model based on logistic selectivity for both fleets, all estimation methods 
provide close to unbiased estimates (median relative errors < 5%) of 

Table 3 
Summary of the seven experiments.  

Factor Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6 Experiment 7 

Species All three Flathead Flathead Flathead Flathead Flathead Flathead 
True 

selectivity 
Base-case (time- 
varying and time- 
invariant) 

All logistic; Low dome 
for fleet 2; Median 
dome for fleet 2; High 
dome for fleet 2 (time- 
varying and time- 
invariant; double 
logistic for both) 

Base-case (time- 
varying and time- 
invariant) 

Base-case (time- 
varying and time- 
invariant) 

Base-case (time- 
varying and time- 
invariant) 

Base-case (time- 
varying and time- 
invariant) 

Base-case (time- 
varying and time- 
invariant) 

2018 depletion 0.5 0.5 0.25, 0.5 0.5 0.5 0.5 0.5 
Catch series Increasing then 

decreasing 
Increasing then 
decreasing 

All four Increasing then 
decreasing 

All four Increasing then 
decreasing 

Increasing then 
decreasing 

First year with 
age data 

1 1 1 1 1, 6, 11 1 1 

Index CV 0.3 0.3 0.3 0.3 0.3 0.3 0.1; 0.3; 0.5 
Age 

composition 
effective 
sample size 

100 100 100 100 100 100 10; 100; 200 

Estimated 
selectivity 

A-F for time- 
invariant and 
time-varying 
selectivity (Eqn 
19 of Xu et al., 
2019) 

A-F for time-invariant 
and time-varying 
selectivity (Eqn 19 of  
Xu [ et al., 2019]) 

A-F for time- 
invariant and time- 
varying selectivity 
(Eqn 19 of Xu [ 
et al., 2019]) 

A for time-invariant 
and time-varying 
selectivity (Eqn 19 
of Xu [ et al., 
2019]), half true σs 

and double true σs) 

A-F for time- 
invariant and time- 
varying selectivity 
(Eqn 19 of Xu [ 
et al., 2019]) 

A-F for time- 
invariant and 
time-varying 
selectivity (Eqn 
19 of Xu [ et al., 
2019]) 

A-F for time- 
invariant and time- 
varying selectivity 
(Eqn 19 of Xu [ 
et al., 2019]) 

Treatment of 
M and h 

Known Known Known Known Known Known; Known 
M estimated; 
h estimated; 
M and h 
estimated 

Number of 
simulation 
trials 

3 × 2×12 10 × 12 2 × 2×4 × 12 2 × 4×6 2 × 4×4 × 12 2 × 12×4 2 × 3×3 × 12  
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spawning biomass4, the deviations in recruitment about the stock- 
recruitment relationship, and depletion (spawning biomass relative to 
unfished spawning biomass). The two spline-based approaches lead to 
wider among-simulation intervals for spawning biomass and some evi
dence for bias. The estimates of SSB0, SSB2018, Depl2018, and RBC2018 are 
also close to unbiased except for those produced when selectivity is 
assumed to logistic for both fleets (Fig. 2; Supplementary Figs 2a-c). The 
estimates of selectivity are least biased and most precise, as expected, for 
the base selectivity form because this form matches the operating model 
exactly, and most biased (almost as expected) when both fleets are 
assumed to have logistic selectivity. The cases in which the functional 
form for selectivity allows selectivity to be dome-shaped for both fleets 
(spline, spline-D, and double) perform adequately, but there are some 
cases when selectivity for fleet 1 is estimated to be dome-shaped rather 
than asymptotic (Fig. 2, right panels). 

For the operating model-estimation combination in Fig. 2, the cor
rect selectivity form is selected in 36% of simulations, with AIC selecting 
logistic selectivity for both fleets in 16% of simulations, and both fleets 
having dome-shaped double normal selectivity in 46% of simulations 
(Fig. 3a) [the equivalent values for time-varying selectivity in the 
operating model are 25%, 27% and 37% Fig. 3b], indicating that AIC can 
select both more and less complex selectivity formulations and does not 

always correctly select the correct form even when there are ‘good’ data 
and no model mis-specification. The spline forms for selectivity were 
almost never selected by AIC when the operating model and estimation 
method had time-invariant selectivity, even though they led to the es
timates with the lowest absolute relative errors for management quan
tities in 15% and 1% of the replicates (Fig. 3a,b). In contrast, spline 
selectivity was selected in 12% of simulation replicates when the esti
mation method allowed for time-varying selectivity (Fig. 3b). The re
sults in Fig. 3 are not sensitive to the whether the operating model allows 
for time-varying selectivity (Supplementary Fig. S3). 

Table 4 compares the selectivity forms for tiger flathead for the four 
key quantities of management interest in terms of MAREs.5 The base 
form usually leads to the lowest MAREs (although Fig. 3a,b shows that 
assuming this form does not always lead to estimates of the lowest ab
solute relative errors for each simulation replicate), with the double 
normal form often performing equally well (or even better). Logistic 
selectivity performs poorest with MAREs that are more than 120% larger 
than for the base form depending on the management quantity, and 
whether the operating model and estimation method allow for time- 
varying selectivity. The two spline forms perform very similarly but 
often poorer than the base form. The AIC-selected form does not perform 
as well as the base or double normal forms and performs amongst the 
poorest when the operating model includes time-varying selectivity. 
Consequently, the AIC-selected form is not a focus for the remaining 

Fig. 2. The results for tiger flathead when the operating model and estimation method assume time-invariant selectivity. Relative error distributions (boxes 50% of 
distributions; bars extend to 90% intervals) for the model outputs and the coverage probability of 90% confidence intervals for these outputs (the gray bars indicate 
the proportion of simulations for which the true value is in the estimated 90% confidence intervals and the dotted line is placed at 0.9) (1st column), relative error 
distributions for spawning biomass, the deviations in recruitment about the stock-recruitment relationship, and depletion (columns 2–4; black line median, dashed 
red line no error, light shading 50% intervals, dark shading 90% intervals), the distributions for the estimates of selectivity, with the operating model selectivity 
indicated by the black lines, and final column indicates the proportion of replicates that led to a positive definite Hessian matrix (solid red line indicates 100%; 
Experiment 1 results for Species 2 and 3 lead to some non-positive definite Hessian matrices [see Supplementary Materials]). 

4 Natural mortality and the steepness of the stock-recruitment relationship 
are set to true values for these analyses so no relative error distributions are 
provided. 5 A difference of 10% are considered substantial enough to warrant attention. 

K.M. Privitera-Johnson et al.                                                                                                                                                                                                                 



Fisheries Research 249 (2022) 106247

7

analysis of results. Including time-varying selectivity in the operating 
model leads to larger relative errors for the base form when the esti
mation method has time-invariant selectivity, but allowing for time- 
varying selectivity in the estimation method generally did not improve 
estimation performance, particularly for SSB0 and SSB2018 (Table 4). 

The coverage probabilities are less than the nominal level for all 
quantities, with lowest coverage probability for SSB0 and the highest for 
SSB2018 and RBC2018 (Fig. 2; Supplementary Fig. S2a-c). 

3.1.2. Blue grenadier and school whiting 
The estimation methods are generally able to converge with positive 

definite Hessian matrices, except when the assessment is based on the 
double form for blue grenadier. The results for blue grenadier and school 
whiting are qualitatively the same as those for tiger flathead (Figs. 3c-f;  
4; Supplementary Fig. S4; Table 4). However, the MAREs are generally 
higher for blue grenadier and lower for school whiting and the two 
spline forms lead to noticeably better estimates for 2018 depletion than 
other forms for blue grenadier and poorer estimates for school whiting. 

3.2. Experiment 2 

Allowing for a stronger dome in selectivity in the operating model 
(“Low dome” in Fig. 5 and Table 5) leads to larger MAREs when selec
tivity is assumed in the estimation method to be logistic for both fleets 
(MAREs > 3 times that for the base form in some cases). In contrast, 
logistic selectivity in the estimation method performs as well as, and 
often better than the base form for the “High dome” and “Both logistic” 
operating models, and the spline and spline-D forms perform almost as 
well as “logistic” when selectivity is time-invariant in the estimation 
method. As before, the “double” form in the estimation method performs 

as well as (or slightly (<5% lower MARE) better) than base (and “lo
gistic”). The two spline forms again perform between the base/double 
and logistic. The relative errors are negative for the base and logistic 
forms if selectivity is double normal for both fleets in the operating 
model (Fig. 5), with the consequence that the MAREs are higher for this 
operating model than for the remaining operating models. In contrast, 
the spline and spline-D forms are able to detect that the two fleets have 
dome-shaped selectivity (Fig. 6, right panels) and the two spline forms 
and double normal perform better than the base form for the operating 
models with double normal selectivity. For this operating model, the 
AIC-selected formulation is predominantly “double” when selectivity is 
time-invariant in the estimation model, which is the correct formulation 
(Fig. 7g,h,o,p). 

Overall, the double form with time-invariant selectivity in the esti
mation method leads to the best performance when selectivity is double- 
normal in the operating model and is never poorest. This is not the case 
for the other forms that could allow for flexible selectivity (spline, 
spline-D and AIC-selected). 

3.3. Experiment 3 

The relative performances of the various selectivity forms are 
generally robust to the depletion of the population in 2018 (0.25 or 0.5) 
and the pattern of historical catches (Table 6; Supplementary Table 1). 
However, the MAREs are generally lower when depletion is 0.25 (the 
exceptions being depletion in 2018, for which the MARE is lower when 
depletion is 0.5 and when the catch history follows the “high initial” 
pattern). Although logistic selectivity is usually outperformed by base 
selectivity, the magnitude to which this is the case is lower for a 
depletion of 0.25 than a depletion of 0.5, most likely because there are 

Fig. 3. Frequency that a selectivity form was selected by AIC and that led to the lowest absolute relative errors by model output (colors), and the relative error 
distributions for the estimates of selectivity for the oldest age in 2017 by fleet when there is time-invariant selectivity in the operating model. Results are shown in the 
upper panels for tiger flathead, in the center panels for blue grenadier, and in the lower panels for school whiting. The results in the first two columns for each species 
pertain to when selectivity is time-invariant in the estimation method while those in the right two columns pertain to when selectivity is time-varying in the 
estimation method. For the selectivity error plots, the first set of six represent time-invariant selectivity in the operating model and the second set of six represent 
time-varying selectivity in the operating model. 
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Table 4 
Median Absolute Relative Errors (MAREs) for experiment 1 for tiger flathead, blue grenadier and school whiting. The leftmost “Base” column reports the MAREs and, 
for the remaining columns, the MARE for the cases concerned is divided by the MARE for “Base”.   

Estimation method (time-invariant selectivity) Estimation method (time-varying selectivity)  

Base Logistic Spline Spline-D Double AIC Base Logistic Spline Spline-D Double AIC 

Tiger flathead (time-invariant selectivity in the OM)       
SSB0  0.092  1.19  1.16  1.16  1.10  1.11  1.10  1.23  1.06  1.06  1.12  1.12 
SSB2018  0.099  1.50  1.06  1.06  0.98  1.03  0.95  2.22  1.42  1.42  1.02  1.45 
Depl2018  0.083  1.24  1.12  1.12  0.98  1.01  1.08  1.74  1.40  1.40  0.95  1.39 
RBC2018  0.094  1.38  1.05  1.05  0.97  1.05  0.97  2.16  1.45  1.45  1.00  1.48 
Tiger flathead (time-varying selectivity in the OM)       
SSB0  0.103  1.05  0.99  0.99  1.07  1.05  0.88  1.06  0.95  0.95  0.91  1.04 
SSB2018  0.120  1.24  1.04  1.04  0.99  1.05  0.99  1.92  1.10  1.10  0.96  1.32 
Depl2018  0.092  1.14  1.04  1.04  0.97  1.02  1.06  1.65  1.21  1.21  1.07  1.29 
RBC2018  0.110  1.28  1.11  1.11  1.08  1.12  1.01  1.94  1.18  1.18  1.01  1.36 
Blue grenadier (time-invariant selectivity in the OM)       
SSB0  0.190  1.34  1.01  1.08  1.09  0.98  0.84  1.40  0.96  0.96  0.89  0.91 
SSB2018  0.144  2.26  1.08  1.08  1.13  1.32  0.94  3.15  1.07  1.07  1.05  1.34 
Depl2018  0.145  1.53  0.75  0.76  0.92  1.02  1.38  1.95  0.89  0.89  1.16  1.21 
RBC2018  0.136  2.25  1.06  1.10  1.05  1.32  1.08  3.15  1.08  1.08  1.06  1.40 
Blue grenadier (time-varying selectivity in the OM)       
SSB0  0.194  1.23  0.98  0.98  1.04  0.89  0.91  1.36  0.91  0.92  0.97  0.97 
SSB2018  0.166  1.78  0.97  0.97  1.03  1.10  0.98  2.63  0.95  0.96  0.95  1.25 
Depl2018  0.140  1.37  0.77  0.79  1.01  0.96  1.39  2.00  0.86  0.87  1.23  1.22 
RBC2018  0.156  1.76  1.02  0.99  1.00  1.19  1.09  2.70  1.05  1.05  1.06  1.33 
School whiting (time-invariant selectivity in the OM)       
SSB0  0.062  1.03  1.05  1.14  0.92  1.11  1.01  1.22  1.01  0.97  1.04  1.03 
SSB2018  0.094  1.09  1.17  1.20  1.00  1.10  1.24  1.89  1.86  1.65  1.26  1.40 
Depl2018  0.080  1.03  1.17  1.20  0.96  0.97  1.22  1.49  1.76  1.59  1.17  1.18 
RBC2018  0.066  1.22  1.23  1.30  0.98  1.09  1.31  2.01  1.91  1.62  1.31  1.42 
School whiting (time-varying selectivity in the OM)       
SSB0  0.068  1.03  1.02  1.08  0.99  1.01  0.91  1.11  1.04  0.98  0.96  1.04 
SSB2018  0.100  1.13  1.34  1.41  0.99  1.08  1.24  1.76  1.76  1.50  1.30  1.29 
Depl2018  0.094  1.07  1.17  1.20  1.10  1.08  1.16  1.31  1.53  1.36  1.18  1.10 
RBC2018  0.078  1.11  1.24  1.31  0.98  1.06  1.06  1.72  1.70  1.56  1.25  1.27  

Fig. 4. Relative error distributions for experiment 1. The rows show results by species and when selectivity is time-invariant or time-varying in the operating model. 
The open and shaded box plots represent results for time-invariant / time-varying selectivity in the estimation method. 
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far fewer old animals when depletion is 0.25. The MAREs are higher for 
the ‘constant’, ‘high initial’ and particularly the ‘increasing’ catch series 
compared to the ‘increasing and decreasing’ catch series, which is not 
surprising given that these series would be considered to be less infor
mative that the “increasing-then-decreasing” series (Table 6; Supple
mentary Table 1). 

3.4. Experiment 4 

The effects of fixing rather than estimating the values for the extent 
to which selectivity varies over time (σS) depend on the “true” value for 
σS. Not unexpectedly, performance is about the same for σS= 0.2 and not 
allowing for stochastic selectivity in the estimation method (Table 7). 
However, setting σS= 0.8 leads to generally poorer performance for the 
base, logistic and spline selectivity patterns when selectivity is time- 
invariant in the operating model (Table 7). The ability to estimate 

Fig. 5. Relative error distributions for experiment 2. The rows show results for tiger flathead for four of the operating model selectivity forms and whether selectivity 
is time-invariant or time-varying in the operating model. The open and shaded box plots represent results for time-invariant / time-varying selectivity in the esti
mation method. 

K.M. Privitera-Johnson et al.                                                                                                                                                                                                                 



Fisheries Research 249 (2022) 106247

10

depletion is much poorer when σS= 0.8 in the estimation methods 
compared to estimating σS or setting it 0.2 when σS= 0.4 in the oper
ating model, and the logistic form generally performs more poorly when 
σS= 0.8 in the estimation method. 

3.5. Experiment 5 

With few exceptions, not having age-composition data from the start 
of the fishery leads, as expected, to poorer estimation performance. 
However, the degradation in estimation performance is not uniform 
across the selectivity forms. In particular, the performances of the two 
spline forms degrade the most when data are only available from year 6 
and then year 11 (Table 8; Supplementary Table 2), with the effects most 
marked for the ‘constant’ catch series (Table 8). The ability of the double 

form to estimate 2018 depletion and to a lesser extent 2018 spawning 
biomass and 2018 RBC also gets poorer with fewer data. The ability to 
estimate the management quantities does not deteriorate as much when 
there are no data for the earliest years of the fishery when selectivity is 
logistic for both fleets compared to the other forms. However, logistic 
selectivity is still outperformed by the base and double forms. 

3.6. Experiment 6 

Experiment 6 explores the ability to estimate M, h and selectivity 
simultaneously, and the impact on the ability to estimate quantities of 
management interest. The MAREs for the management quantities for the 
base form are notably larger when M is estimated and the operating 
model has time-invariant selectivity (Table 9a). However, the effects on 

Table 5 
Median Absolute Relative Errors (MAREs) for experiment 2. The leftmost “Base” column reports the MAREs and, for the remaining columns, the MARE for the cases 
concerned is divided by the MARE for “Base”.   

(a) Time-invariant selectivity in the operating model  

Estimation method (time-invariant selectivity) Estimation method (time-varying selectivity)  

Base Logistic Spline Spline-D Double AIC Base Logistic Spline Spline-D Double AIC 

Base       
SSB0 0.092 1.19 1.16 1.16 1.10 1.11 1.10 1.23 1.06 1.06 1.12 1.12 
SSB2018 0.099 1.50 1.06 1.06 0.98 1.03 0.95 2.22 1.42 1.42 1.02 1.45 
Depl2018 0.083 1.24 1.12 1.12 0.98 1.01 1.08 1.74 1.40 1.40 0.95 1.39 
RBC2018 0.094 1.38 1.05 1.05 0.97 1.05 0.97 2.16 1.45 1.45 1.00 1.48 
Low dome       
SSB0 0.103 1.25 1.05 1.05 1.02 1.09 0.98 1.36 1.04 1.04 1.00 1.15 
SSB2018 0.098 2.00 1.27 1.26 0.98 1.17 1.00 3.20 1.57 1.57 0.98 1.96 
Depl2018 0.087 1.38 1.16 1.16 0.96 1.14 1.03 2.37 1.38 1.38 0.96 1.77 
RBC2018 0.097 1.88 1.22 1.22 0.94 1.12 0.96 3.06 1.50 1.50 0.94 1.92 
High dome       
SSB0 0.093 0.98 1.13 1.10 0.95 0.98 0.94 0.96 1.05 1.04 0.97 0.94 
SSB2018 0.095 1.00 1.05 1.04 1.04 1.05 1.01 1.00 1.40 1.40 1.05 1.14 
Depl2018 0.086 0.97 1.09 1.08 0.99 1.00 1.02 1.14 1.28 1.28 0.99 1.09 
RBC2018 0.087 1.01 1.16 1.15 1.08 1.08 1.15 1.06 1.54 1.54 1.14 1.24 
Both logistic       
SSB0 0.092 1.06 1.10 1.10 0.94 1.04 0.91 0.91 1.05 1.05 0.96 0.90 
SSB2018 0.091 1.09 1.09 1.09 0.99 1.10 1.04 1.08 1.43 1.43 1.02 1.17 
Depl2018 0.085 1.00 1.08 1.08 1.00 1.01 1.03 1.12 1.33 1.33 1.02 1.10 
RBC2018 0.092 1.00 1.09 1.09 0.99 1.02 1.03 1.11 1.40 1.40 1.01 1.12 
Both double normal (base dome)       
SSB0 0.119 1.09 0.97 0.97 0.97 1.00 1.08 1.28 0.94 0.99 0.93 1.09 
SSB2018 0.180 1.26 0.69 0.69 0.72 0.88 1.45 1.87 0.85 0.85 0.86 1.42 
Depl2018 0.105 1.28 0.99 0.99 0.85 0.93 1.62 2.15 1.15 1.15 1.09 1.67 
RBC2018 0.161 1.28 0.66 0.66 0.70 0.87 1.51 1.96 0.94 0.93 0.89 1.48 
(b) Time-varying selectivity in the operating model  

Estimation method (time-invariant selectivity) Estimation method (time-varying selectivity)  
Base Logistic Spline Spline-D Double AIC Base Logistic Spline Spline-D Double AIC 

Base       
SSB0 0.103 1.05 0.99 0.99 1.07 1.05 0.88 1.06 0.95 0.95 0.91 1.04 
SSB2018 0.120 1.24 1.04 1.04 0.99 1.05 0.99 1.92 1.10 1.10 0.96 1.32 
Depl2018 0.092 1.14 1.04 1.04 0.97 1.02 1.06 1.65 1.21 1.21 1.07 1.29 
RBC2018 0.110 1.28 1.11 1.11 1.08 1.12 1.01 1.94 1.18 1.18 1.01 1.36 
Low dome       
SSB0 0.109 1.10 1.09 1.09 1.02 1.04 0.85 1.30 0.96 0.96 0.89 0.97 
SSB2018 0.127 1.57 1.07 1.07 1.00 1.06 0.96 2.49 1.13 1.13 0.95 1.66 
Depl2018 0.094 1.38 1.10 1.13 0.94 1.06 1.04 2.25 1.16 1.16 1.05 1.63 
RBC2018 0.118 1.58 1.07 1.07 1.04 1.13 1.00 2.49 1.18 1.18 0.95 1.80 
High dome       
SSB0 0.095 0.98 1.04 1.04 1.03 0.99 0.92 0.86 1.03 1.03 0.97 0.93 
SSB2018 0.114 0.97 1.03 1.03 1.00 0.99 0.96 1.06 1.20 1.20 0.96 1.04 
Depl2018 0.095 0.97 1.03 1.03 1.02 1.03 1.11 1.14 1.19 1.19 1.09 1.16 
RBC2018 0.111 1.00 1.11 1.11 1.03 1.01 0.98 1.07 1.16 1.16 0.95 1.07 
Both logistic       
SSB0 0.097 0.97 1.04 1.04 1.05 0.98 0.88 0.84 1.03 1.03 0.90 0.90 
SSB2018 0.120 0.87 0.96 0.96 0.96 0.94 0.96 0.97 1.14 1.14 0.93 1.04 
Depl2018 0.101 0.95 0.95 0.95 0.95 1.00 1.01 1.06 1.15 1.15 1.03 1.13 
RBC2018 0.114 1.00 1.04 1.04 1.00 1.00 0.97 0.99 1.15 1.15 0.99 1.10 
Both double normal (base dome)       
SSB0 0.112 1.13 1.05 1.05 1.01 1.01 1.13 1.32 0.99 0.99 0.94 1.13 
SSB2018 0.180 1.29 0.77 0.77 0.74 0.87 1.46 1.86 0.78 0.78 0.92 1.48 
Depl2018 0.108 1.25 0.94 0.94 0.82 0.86 1.65 2.12 1.05 1.05 1.05 1.51 
RBC2018 0.156 1.32 0.84 0.84 0.82 0.96 1.61 2.02 0.87 0.87 0.98 1.59  
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Fig. 6. As for Fig. 2, except that the results pertain to experiment 2 when the operating model has double-normal selectivity for both fleets.  

Fig. 7. As for Fig. 3, except the results pertain to experiment 2.  
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the performance of the base form of estimating M when the operating 
model has time-varying selectivity and estimating h for both variants of 
the operating model are relatively smaller (Table 9b). The performance 
of the logistic form generally improves when M and h are estimated 
(contrast Figs. 2 and 8), likely because it frees up some parameters to 
account for mis-specification, with the consequence that there are cases 
when assuming the logistic form of selectivity for both fleets leads to the 
lowest MAREs. The performances of the two spline forms deteriorate 
markedly when M is estimated and to a lesser (but still to a substantial) 
extent when h is estimated. The performance of the double form also 
deteriorates when M and h are estimated, often leading to the base form 
performing best overall. 

Estimation of M is best when the estimation method assumes the base 
form (Table 9; Fig. 8), with the MAREs for the remaining forms often 
twice as large as those for the base form. Steepness is poorly estimated in 
all cases, possible because Experiment 6 used a depletion in the final 
year of only 0.5, but the ability to estimate h is poorer when one of the 
spline forms is assumed. 

3.7. Experiment 7 

Reducing the effective sample size for the age-composition data from 
100 to 10 leads, not surprisingly, to markedly poor estimation perfor
mance and higher MAREs (Supplementary Table 3). In contrast, the 
benefits in terms of lower MAREs are not as obvious when the effective 

sample sizes are doubled. This is perhaps not unexpected given that the 
variances of the age-composition proportions are increased 10-fold in 
one case and reduced by half in the other. Decreasing the CV of index of 
abundance from 0.3 to 0.1 leads to lower MAREs unless the effective 
sample size is also decreased from 100 to 10. The effects of changing the 
effective sample size on the relative performances of the selectivity 
forms are generally insensitive to the index CV and the effective sample 
size for the age-composition data. The exception to this general result is 
when selectivity is logistic for both fleets, in which case, reducing the 
effective sample size for the age-composition data leads to better per
formance (and often performance that is not very different from that of 
the best-performing selectivity forms). This improvement in perfor
mance can again be attributed to freeing up some parameters to account 
for mis-specification. 

4. Discussion 

The model structure assumptions used to relate selectivity and 
composition data in this study influenced the bias and precision of 
parameter estimates for the underlying population dynamics model and, 
thus, the resulting quantities of management interest. Natural mortality 
and selectivity are confounded due to the population dynamics, with 
implications for the estimation of derived outputs, such as stock size and 
the catch limits corresponding to a harvest control rule. As expected, 
estimation performance is generally best when the correct functional 

Table 6 
Median Absolute Relative Errors (MAREs) for experiment 3 when selectivity is time-varying in the operating model and in the estimation method (results are shown for 
all combinations of whether selectivity is time-varying or not in Supplementary Tables 1). The leftmost “Base” column reports the MAREs and, for the remaining 
columns, the MARE for the cases concerned is divided by the MARE for “Base”.   

Depl2018 = 0.25 Depl2018 = 0.5 (base)  

Base Logistic Spline Spline-D Double AIC Base Logistic Spline Spline-D Double AIC 

Increasing-then-decreasing catch series       
SSB0  0.075  1.13  1.09  1.09  1.04  1.03  0.092  1.19  1.16  1.16  1.10  1.11 
SSB2018  0.091  1.16  1.13  1.13  1.00  1.03  0.099  1.50  1.06  1.06  0.98  1.03 
Depl2018  0.095  1.04  1.14  1.15  0.99  0.98  0.083  1.24  1.12  1.12  0.98  1.01 
RBC2018  0.087  1.19  1.23  1.24  1.00  1.04  0.094  1.38  1.05  1.05  0.97  1.05 
Increasing catch series       
SSB0  0.085  1.12  1.11  1.10  1.00  0.98  0.121  1.25  1.25  1.21  1.05  1.08 
SSB2018  0.117  1.30  1.50  1.46  1.07  1.12  0.138  1.84  1.40  1.39  1.00  1.09 
Depl2018  0.114  0.99  1.11  1.08  0.96  0.95  0.090  1.44  1.16  1.16  0.96  1.08 
RBC2018  0.107  1.29  1.50  1.46  1.04  1.12  0.135  1.72  1.41  1.36  1.00  1.08 
Constant catch series       
SSB0  0.081  0.98  1.05  1.03  0.98  0.98  0.108  1.13  1.25  1.25  1.01  1.01 
SSB2018  0.098  1.16  1.30  1.29  0.99  0.99  0.119  1.55  1.33  1.33  1.00  1.05 
Depl2018  0.104  1.11  1.17  1.16  0.96  1.14  0.090  1.34  1.23  1.23  0.97  1.15 
RBC2018  0.094  1.15  1.22  1.19  1.00  1.00  0.112  1.49  1.25  1.25  1.01  1.07 
High initial catch series       
SSB0  0.083  0.95  1.06  1.06  1.00  1.02  0.087  1.35  1.23  1.25  1.05  1.14 
SSB2018  0.096  1.12  1.35  1.25  1.08  1.10  0.111  1.56  1.62  1.47  0.97  1.15 
Depl2018  0.113  1.02  1.16  1.12  1.00  1.00  0.093  1.26  1.39  1.28  0.95  1.27 
RBC2018  0.094  1.09  1.28  1.25  1.04  1.08  0.108  1.36  1.47  1.37  0.94  1.01  

Table 7 
Median Absolute Relative Errors (MAREs) for experiment 4. The leftmost “Base” column reports the MAREs and, for the remaining columns, the MARE for the cases 
concerned is divided by the MARE for “Base”.   

σS fixed at 0.2 in the estimation method σS fixed at 0.8 in the estimation method  

Base Logistic Spline Spline-D Double AIC Base Logistic Spline Spline-D Double AIC 

No stochastic selectivity in the OM       
SSB0  0.091  1.21  1.18  1.18  1.12  1.15  1.01  1.40  1.13  1.13  1.04  1.15 
SSB2018  0.099  1.51  1.07  1.07  0.99  1.06  1.20  3.06  1.52  1.52  1.15  1.96 
Depl2018  0.083  1.23  1.12  1.12  0.99  1.05  1.40  2.65  1.67  1.67  1.32  1.82 
RBC2018  0.091  1.43  1.07  1.07  1.01  1.09  1.26  3.22  1.76  1.76  1.30  2.01 
Stochastic selectivity in the OM       
SSB0  0.101  1.07  1.00  1.00  1.08  1.07  0.86  1.17  0.93  0.93  0.90  1.08 
SSB2018  0.120  1.26  1.05  1.05  1.02  1.06  1.04  2.47  1.21  1.21  1.00  1.39 
Depl2018  0.092  1.14  1.07  1.05  0.96  1.02  1.39  2.28  1.48  1.48  1.25  1.72 
RBC2018  0.112  1.28  1.10  1.09  1.05  1.14  1.17  2.67  1.37  1.37  1.04  1.61  
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form is chosen for selectivity-at-age by fleet. However, the consequences 
of choosing a functional form that is not sufficiently flexible (i.e., 
assuming a logistic form when selectivity is actually dome-shaped) are 
more severe than assuming a more flexible form (e.g., a double normal 
form or a spline). In general, forcing at least one fleet to have asymptotic 
selectivity does not lead to markedly more robust estimation perfor
mance, with the exception being when there is limited contrast in the 
biomass time-series or the sample sizes for age-composition are low. 
Considerations for determining the most appropriate default assump
tions about the functional form of selectivity are outlined below. 

As expected, the ability to estimate selectivity and hence quantities 
of management interest depended on the quality of the data, with per
formance deteriorating markedly with lower effective sample sizes for 
the age-composition data and improving with a more precise index of 
abundance. Indeed, incorrectly assuming logistic selectivity was often 
the best performing approach for low effective sample sizes or shortened 
data time series. Better performance with a good index of abundance is 
not unexpected given that most of the management quantities are 
related to absolute abundance. Perhaps less expected, allowing for sto
chastic variation in selectivity did not markedly improve estimation 
performance, even when selectivity for young ages was time-varying in 
the operating model. However, the authors recommend when time- 
varying selectivity is estimated, it is best to estimate the extent of 
time-variation (e.g., following Xu et al., 2019) because setting the extent 
of time-variation larger than the true extent led to markedly poorer 
estimation performance in this study (Table 7). We also expect that other 
management quantities, particularly recent recruitment estimates and 
longer-term catch projections, will be more sensitive to time-varying 
selectivity. 

The spline forms are the most general of those considered in this 
paper and performed adequately when there were data from the start of 
the fishery and the most informative catch series was used. However, 

these forms could lead to very biased estimates of selectivity and hence 
management quantities on occasion. The biases in estimates from the 
spline form increased when: a) M was estimated along with the other 
parameters of the model (Fig. 8), b) data were not available from the 
start of the fishery and c) the catch series was uninformative. Thus, 
while they allow for considerable flexibility, care is needed when 
implementing spline-based selectivity patterns for all the fleets in an 
assessment (see below). There was also little difference in results be
tween standard and spline-D forms. 

The base form used in this study implemented the most general 
interpretation of the practice of assuming that at least one selectivity 
pattern is asymptotic. In general, this assumption matched the specifi
cations of the operating model. The exception was when selectivity for 
both fleets was actually domed-shaped. AIC often selected the double 
normal form when this form was correct (Fig. 7). However, the perfor
mance of the double normal form deteriorated when: a) data were not 
available from the start of exploitation, b) M was estimated along with 
selectivity (thereby increasing confounding) and c) the less informative 
catch series was used. Thus, no clear best practice guideline emerges. In 
general, assuming at least one fleet has asymptotic selectivity is robust to 
lack of informative data, but typically leads to bias. Use of model se
lection criteria can sometimes identify that selectivity is really dome- 
shaped for all fleets, but this is not fully reliable. 

The authors anticipated that use of model selection methods could 
lead to improved estimation performance because the analyses of this 
paper included the true selectivity form in the set of estimation methods. 
However, this was not the case. AIC selected both forms that were too 
complicated (e.g., dome-shaped when the true form was asymptotic) 
and too simple (e.g., logistic when the true form was dome-shaped). The 
exact reasons for this are unclear but are probably related to the over- 
parameterization for the more complex forms (sensu Monnahan et al., 
2020) and the fact that the models are not formed as state-space models 

Table 8 
Median Absolute Relative Errors (MAREs) for experiment 5. The leftmost “Base” column reports the MAREs and, for the remaining columns, the MARE for the cases 
concerned is divided by the MARE for “Base”.   

Estimation method (time-invariant selectivity) Estimation method (time-varying selectivity)  

Base Logistic Spline Spline-D Double AIC Base Logistic Spline Spline-D Double AIC 

Increasing-then-decreasing catch series         
Data from year 1         
SSB0  0.092  1.19  1.16  1.16  1.10  1.11 1.10 1.23 1.06 1.06 1.12 1.12 
SSB2018  0.099  1.50  1.06  1.06  0.98  1.03 0.95 2.22 1.42 1.42 1.02 1.45 
Depl2018  0.083  1.24  1.12  1.12  0.98  1.01 1.08 1.74 1.40 1.40 0.95 1.39 
RBC2018  0.094  1.38  1.05  1.05  0.97  1.05 0.97 2.16 1.45 1.45 1.00 1.48 
Data from year 6         
SSB0  0.098  1.19  1.33  1.33  1.05  1.08 0.96 1.16 1.22 1.22 0.98 1.03 
SSB2018  0.101  1.44  1.25  1.25  1.02  1.16 1.09 2.04 1.62 1.62 1.04 1.52 
Depl2018  0.083  1.15  1.08  1.08  0.94  1.07 1.18 1.69 1.60 1.60 1.01 1.49 
RBC2018  0.097  1.33  1.18  1.18  1.01  1.10 1.08 1.88 1.67 1.67 1.07 1.54 
Data from year 11         
SSB0  0.098  1.15  1.43  1.43  0.99  1.10 0.96 1.14 1.32 1.32 1.00 1.11 
SSB2018  0.094  1.43  1.58  1.59  1.00  1.21 1.22 2.05 2.29 2.25 1.15 1.53 
Depl2018  0.079  1.16  1.34  1.38  0.99  1.10 1.20 1.49 2.12 2.12 1.14 1.42 
RBC2018  0.091  1.31  1.40  1.42  0.99  1.16 1.04 1.79 2.30 2.27 1.19 1.45 
Constant catch series         
Data from year 1         
SSB0  0.108  1.13  1.25  1.25  1.01  1.01 0.81 1.19 1.24 1.24 0.99 1.02 
SSB2018  0.119  1.55  1.33  1.33  1.00  1.05 0.92 2.28 1.53 1.53 0.95 1.48 
Depl2018  0.090  1.34  1.23  1.23  0.97  1.15 1.06 1.96 1.24 1.24 0.99 1.64 
RBC2018  0.112  1.49  1.25  1.25  1.01  1.07 0.91 2.24 1.48 1.48 1.01 1.46 
Data from year 6         
SSB0  0.104  1.15  1.96  1.96  1.07  1.06 0.91 1.22 1.79 1.79 1.05 1.19 
SSB2018  0.123  1.41  2.01  2.01  1.01  1.08 0.94 1.92 2.00 2.00 0.91 1.33 
Depl2018  0.090  1.17  1.64  1.64  0.98  1.09 1.11 1.69 1.89 1.89 1.14 1.35 
RBC2018  0.115  1.33  1.84  1.84  1.04  1.05 0.95 1.86 2.05 2.08 0.95 1.27 
Data from year 11         
SSB0  0.109  1.09  260.66  250.07  0.98  1.01 0.88 1.17 286.96 289.59 0.89 1.21 
SSB2018  0.117  1.45  401.32  389.27  1.02  1.22 1.01 1.90 428.62 434.68 1.12 1.60 
Depl2018  0.090  1.06  6.34  6.26  0.93  1.02 1.12 1.55 6.01 6.01 1.10 1.49 
RBC2018  0.111  1.36  355.26  343.17  1.01  1.18 1.01 1.77 363.27 372.70 1.09 1.47  
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so the effective number of parameters is not correctly calculated. This 
could be explored further in future studies based on simpler selectivity 
patterns of models such as SAM (e.g. Berg and Nielsen, 2016) that are 
based on state-space estimation. 

For the analyses of this paper, the double form was the most robust to 
the true form of selectivity (i.e., it performed better when it was the true 
selectivity form and not much poorer when it was more complicated 
than needed). An exception to this general result was when M was also 
estimated, presumably due to the confounding between selectivity and 
natural mortality in age-composition data. 

4.1. Caveats and future work 

The absolute values for the MAREs should be interpreted with some 
caution because the simulations herein make assumptions that are likely 
to be violated in practice. Specifically, apart from the forms for 

selectivity by fleet, the population dynamics and observation models 
were correctly specified. Moreover, many parameters (e.g., fecundity 
and growth) were assumed known and were known exactly for most 
analyses (i.e., natural mortality and stock-recruitment steepness). The 
assumption that growth is known exactly would be more consequential 
had size- rather than age-composition data been available for parameter 
estimation and selectivity was assumed to be a function of size rather 
than age. The true forms for selectivity were all fairly simple. No sce
narios considered cases where a fleet is a combination of metiers (i.e., a 
group of vessels that target a specific set of species using a particular 
gear during a specific time period or within a specific area) with very 
different selectivity patterns. Such cases may result in an overall selec
tivity pattern that is multi-modal—as has been observed for tropical 
tuna assessments. Future work should also consider a constantly 
increasing selectivity pattern, often relevant for hook-dominated reef 
fish fisheries. 

Table 9 
Median Absolute Relative Errors (MAREs) for experiment 6. The leftmost “Base” column reports the MAREs and, for the remaining columns, the MARE for the cases 
concerned is divided by the MARE for “Base”.   

Estimation method (time-invariant selectivity) Estimation method (time-varying selectivity)  

Base Logistic Spline Spline-D Double AIC Base Logistic Spline Spline-D Double AIC 

(a) Time-invariant selectivity in the OM       
Base             
SSB0 0.092 1.19 1.16 1.16 1.10 1.11 1.10 1.23 1.06 1.06 1.12 1.12 
SSB2018 0.099 1.50 1.06 1.06 0.98 1.03 0.95 2.22 1.42 1.42 1.02 1.45 
Depl2018 0.083 1.24 1.12 1.12 0.98 1.01 1.08 1.74 1.40 1.40 0.95 1.39 
RBC2018 0.094 1.38 1.05 1.05 0.97 1.05 0.97 2.16 1.45 1.45 1.00 1.48 
Estimate M       
M 0.023 2.76 31.58 31.56 1.28 1.87 1.03 3.15 31.71 31.71 1.55 3.02 
SSB0 0.096 1.08 34.65 34.65 1.03 1.03 1.10 1.00 37.75 37.75 1.04 1.41 
SSB2018 0.111 0.84 24.48 24.48 1.06 1.02 1.13 0.87 28.06 28.06 1.22 1.44 
Depl2018 0.086 0.98 2.67 2.67 1.03 1.10 1.08 1.03 2.58 2.58 1.22 1.34 
RBC2018 0.122 1.16 3.04 3.01 1.15 1.08 1.12 1.06 2.72 2.72 1.20 1.44 
Estimate Steepness       
h 0.333 1.00 1.31 1.31 0.99 1.00 1.00 1.00 1.64 1.64 1.00 1.00 
SSB0 0.082 1.55 3.54 3.54 1.27 1.41 1.07 1.81 5.93 5.93 1.17 1.64 
SSB2018 0.097 1.41 1.62 1.62 0.98 1.08 1.00 1.97 1.96 1.95 1.02 1.49 
Depl2018 0.083 0.98 2.50 2.50 1.12 1.13 1.12 1.13 4.27 4.27 1.25 1.24 
RBC2018 0.090 1.36 1.44 1.44 1.07 1.17 1.09 1.94 2.07 2.02 1.07 1.47 
Estimate M and steepness       
M 0.027 2.11 27.45 27.46 1.41 1.50 0.99 1.00 27.47 27.48 1.50 2.96 
h 0.333 1.00 1.56 1.52 1.00 1.00 1.00 1.00 2.20 2.20 1.00 1.00 
SSB0 0.114 0.98 34.89 35.06 0.94 1.02 1.05 1.31 46.75 47.04 1.00 1.74 
SSB2018 0.112 0.89 29.48 29.48 1.03 1.00 1.12 1.71 38.72 38.72 1.21 1.65 
Depl2018 0.087 1.15 2.61 2.61 1.00 1.11 1.04 1.07 2.91 2.91 1.07 1.46 
RBC2018 0.120 1.12 3.01 3.02 1.16 1.05 1.15 1.45 2.55 2.57 1.26 1.63  

Estimation method (time-invariant selectivity) Estimation method (time-varying selectivity)  
Base Logistic Spline Spline-D Double AIC Base Logistic Spline Spline-D Double AIC 

(b) Time-varying selectivity in the OM       
Base             
SSB0 0.103 1.05 0.99 0.99 1.07 1.05 0.88 1.06 0.95 0.95 0.91 1.04 
SSB2018 0.120 1.24 1.04 1.04 0.99 1.05 0.99 1.92 1.10 1.10 0.96 1.32 
Depl2018 0.092 1.14 1.04 1.04 0.97 1.02 1.06 1.65 1.21 1.21 1.07 1.29 
RBC2018 0.110 1.28 1.11 1.11 1.08 1.12 1.01 1.94 1.18 1.18 1.01 1.36 
Estimate M       
M 0.026 2.45 28.32 28.32 1.11 1.84 0.99 2.99 28.49 28.49 1.39 2.95 
SSB0 0.096 0.95 35.15 35.15 1.01 1.01 1.02 0.94 39.58 39.58 1.03 1.47 
SSB2018 0.123 0.95 24.28 24.28 0.99 1.01 0.96 0.88 27.93 27.93 1.07 1.33 
Depl2018 0.082 1.12 2.68 2.68 1.01 1.12 1.13 1.19 2.94 2.94 1.21 1.34 
RBC2018 0.127 1.20 2.91 2.91 1.07 1.13 1.01 1.06 2.66 2.66 1.28 1.36 
Estimate Steepness       
h 0.333 1.00 1.29 1.29 1.00 1.00 1.00 1.00 1.64 1.64 1.00 1.00 
SSB0 0.096 1.34 2.60 2.60 1.07 1.17 0.95 1.56 4.96 4.96 1.05 1.42 
SSB2018 0.121 1.10 1.26 1.26 0.98 0.99 0.96 1.65 1.68 1.69 0.97 1.28 
Depl2018 0.099 0.81 2.00 2.00 0.99 0.92 0.99 0.96 3.37 3.37 1.04 1.21 
RBC2018 0.111 1.19 1.28 1.28 0.99 1.04 1.01 1.61 1.76 1.79 1.01 1.35 
Estimate M and steepness       
M 0.028 2.14 26.82 26.82 1.31 1.70 0.99 1.00 26.59 26.59 1.58 3.03 
h 0.333 1.00 1.51 1.51 1.00 1.00 1.00 1.00 2.20 2.19 1.00 1.00 
SSB0 0.110 1.00 37.65 37.65 0.98 1.07 1.09 1.36 49.49 49.68 1.06 1.69 
SSB2018 0.120 0.95 27.18 27.18 0.99 0.95 1.09 1.66 35.85 35.85 1.14 1.63 
Depl2018 0.102 1.16 1.97 1.97 0.93 0.98 1.02 0.93 2.51 2.51 0.91 1.36 
RBC2018 0.124 1.22 2.96 2.96 1.06 1.09 1.11 1.45 2.61 2.63 1.29 1.48  

K.M. Privitera-Johnson et al.                                                                                                                                                                                                                 



Fisheries Research 249 (2022) 106247

15

Fig. 8. a As for Fig. 2 but for experiment 6, in which M is estimated and h is fixed., Fig. 8b. As for Fig. 2 but for experiment 6, in which M is fixed and h is estimated., 
Fig. 8c. As for Fig. 2 but for experiment 6, in which M and h are estimated. 
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The results suggest that the best approach to specifying selectivity in 
an assessment depends to some extent on species’ life history (e.g. the 
performance of the spline approaches for school whiting compared to 
that for tiger flathead and blue grenadier). The three life histories 
considered in this paper cover many of those typically encountered 
when conducting stock assessments. However, a complete analysis 
should examine very long-lived species, such as rockfishes (Sebastes spp) 
and orange roughy (Hoplostethus atlanticus), and particularly very short- 
lived species as such anchovies (Engraulis spp). Future work could 
examine the reasons (e.g., difference in the value of M or number of 
ages) that lead to changes in performance among species life history. 

This study focused on the MARE over the entire time series of data. 
Future work could focus on performance at the end of the time series, 
including retrospective bias (Carvalho et al., 2021) and longer pro
jections of future catch. 

This paper investigated the ability to estimate parameters and 
quantities of management interest (i.e., summarizing results in terms of 
MAREs). Thus, the results provide guidance of best practices, which 
pertain to evaluating stock status (e.g., is a stock above a target or limit 
reference point). However, the primary reason for conducting stock 
assessments is often to support application of harvest control rules and 
hence achievement of management goals. An investigation of the impact 
of modelling different selectivity formulations based on a closed-loop 
simulation framework (i.e., management strategy evaluation (MSE); 
sensu De le Mare, 1986; Cook, 1999, Smith et al., 1999; Punt et al., 2016) 
would better address these management goals. 

4.2. Conclusions 

Here, the authors outlined support for known, novel and future work 
best practices for specifying selectivity in age-structured integrated 
stock assessments. As expected, stock life history and the information 
content of the data (e.g., effective sample size) should guide selectivity 
assumptions. Regarding the latter, for less informative data sets, and 
when there is a poor understanding of fishery and stock dynamics, it is 
best to ignore time-variation in selectivity and force at least one fleet to 
have asymptotic selectivity, while recognizing that results can be biased 
towards high mortality, low biomass. The assumption that one fleet has 
asymptotic selectivity can be relaxed for data rich stocks with infor
mative catch series and reliable age composition data over many years. 
As for novel best practices, we recommend only using the spline-based 
selectivity patterns when there is considerable contrast in catches (and 
when there is contrast, both spline methods perform well). We also 
recommend using the methods from Xu et al. (2019) when assuming 
time-varying selectivity, with a caveat to analysts to think critically 
about whether the extent of time-variation in the model may be larger 
than the “truth” (at least, what best available science can support) and 
the implications for estimation performance. In terms of practices in 
need of future work, the authors also caution that model selection ap
proaches (i.e., AIC) did not perform consistently in this study. We 
recommend that analysts consider multiple selectivity options, examine 
residual patterns and consider including alternative assumptions in the 
form of decision tables. 
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Writing – review & editing. André Punt: Conceptualization; Formal 
analysis; Funding acquisition; Methodology; Software; Supervision; 
Writing – original draft; Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

Eric Williams (SEFSC), Kiva Oken (NWFSC), and an anonymous 
reviewer are thanked for their comments on earlier versions of this 
paper. This publication was partially funded by CSIRO and the Coop
erative Institute for Climate, Ocean, & Ecosystem Studies (CICOES) 
under NOAA Cooperative Agreement NA20OAR4320271, Contribution 
No. 022-1174. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.fishres.2022.106247. 

References 

Bence, J.R., Gordoa, A., Hightower, J.E., 1993. Influence of age-selectivity surveys on the 
reliability of stock synthesis assessments. Can. J. Fish. Aquat. Sci. 50, 827–840. 

Berg, C., Nielsen, A., 2016. Accounting for correlated observations in an age- based state- 
space stock assessment model. ICES J. Mar. Sci. 73, 1788–1797. 

Carvalho, F., Winker, H., Courtney, D., Kapur, M., Kell, L., Cardinale, M., Schirripa, M., 
Kitakado, T., Yemane, D., Piner, K.R., Maunder, M.N., Taylor, I.G., Wetzel, C.R., 
Doering, K., Johnson, K.F., Methot, R.D., 2021. A cookbook for using model 
diagnostics in integrated stock assessments. Fish. Res. 240, 105959. 

Castillo-Jordán, C., Tuck, G., 2020. Blue grenadier (Macruronus novaezelandiae) stock 
assessment based on data up to 2017 base case. In: Tuck, G.N. (Ed.), Stock 
Assessment for the Southern and Eastern Scalefish and Shark Fishery 2018 and 2019. 
Part 1, 2018. Australian Fisheries Management Authority and CSIRO Oceans and 
Atmosphere, Hobart, pp. 314–341, 526 p.  

Cook, J.G., 1999. Improvement of fishery-management advice through simulation testing 
of harvest algorithms? ICES J. Mar. Sci. 56, 797–810. 

Crone, P.R., Valero, J.L., 2014. Evaluation of length- vs. age-composition data and 
associated selectivity assumptions used in stock assessments based on robustness of 
derived management quantities. Fish. Res. 158, 165–171. 

Day, J., 2018a. Tiger flathead (Neoplatycephalus richardsoni) stock assessment using data 
to 2015. Pp 443 - 512. In: Tuck, G.N. (Ed.), Stock Assessment for the Southern and 
Eastern Scalefish and Shark Fishery 2016 and 2017. Part 1, 2016. Australian 
Fisheries Management Authority and CSIRO Oceans and Atmosphere Flagship, 
Hobart, p. 629. 

Day, J., 2018b. School whiting (Sillago flindersi) stock assessment based on data up to 
2016. Pp 588 - 663. In: Tuck, G.N. (Ed.), Stock Assessment for the Southern and 
Eastern Scalefish and Shark Fishery 2016 and 2017. Part 2, 2017. Australian 
Fisheries Management Authority and CSIRO Oceans and Atmosphere, Hobart, p. 837 
(p).  

De le Mare, W., 1986. Simulation studies on management procedures. Rep. Int. Whal. 
Comm. 36, 429–449. 

Francis, R.I.C.C., 2011. Data weighting in statistical fisheries stock assessment models. 
Can. J. Fish. Aquat. Sci. 68, 1124–1138. 

Fournier, D., Archibald, C.P., 1982. A general theory for analysing catch at age data. Can. 
J. Fish. Aquat. Sci. 39, 1195–1207. 

Fulton, E.A., Punt, A.E., Dichmont, C.M., Harvey, C.J., Gorton, R., 2019. Ecosystems say 
good management pays off. Fish. Fish. Oxf. 20, 66–96. 

Hulson, P.F., Hanselman, D.H., 2014. Tradeoffs between bias, robustness, and common 
sense when choosing selectivity forms. Fish. Res. 158, 63–73. 

Hurtado-Ferro, F., Punt, A.E., Hill, K.T., 2014. Use of multiple selectivity patterns as a 
proxy for spatial structure. Fish. Res. 158, 102–115. 

Ichinokawa, M., Okamura, H., Takeuchi, Y., 2014. Data conflict caused by model mis- 
specification of selectivity in an integrated stock assessment model and its potential 
effects on stock status estimation. Fish. Res. 158, 147–157. 

Li, B., Shertzer, K.W., Lynch, P.D., Ianelli, J.N., Legault, C.M., Williams, E.H., Methot, R. 
D., Brooks, E.N., Deroba, J.J., Berger, A.M., Sagarese, S.R., Brodziak, J.K.T., 
Taylor, I.G., Karp, M.A., Wetzel, C.R.M., Supernaw, M., 2021. A comparison of 4 
primary age-structured stock assessment models used in the United States. Fish. Bull. 
119, 149–167. 

Martell, S.J.D., Stewart, I.J., 2014. Toward defining good practices for modelling time- 
varying selectivity. Fish. Res. 158, 84–95. 

Maunder, M.N., Punt, A.E., 2013. A review of integrated analysis in fisheries stock 
assessment. Fish. Res. 142, 61–74. 

Maunder, M.N., Crone, P.R., Valero, J.L., Semmens, B.X., 2014. Selectivity: theory, 
estimation, and application in fishery stock assessment models. Fish. Res. 158, 1–4. 

Methot, R.D., Taylor, I.G., 2011. Adjusting for bias due to variability of estimated 
recruitments in fishery assessment models. Can. J. Fish. Aquat. 68, 1744–1760. 

Methot, R.D., Wetzel, C.R., 2013. Stock Synthesis: a biological and statistical framework 
for fish stock assessment and fishery management. Fish. Res. 142, 86–99. 

Monnahan, C.C., Branch, T.A., Thorson, J.T., Stewart, I.J., Szuwalski, C.S., 2020. 
Overcoming long Bayesian run times in integrated fisheries stock assessments. ICES 
J. Mar. Sci. 76, 1477–1488. 

K.M. Privitera-Johnson et al.                                                                                                                                                                                                                 

https://doi.org/10.1016/j.fishres.2022.106247
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref1
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref1
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref2
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref2
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref3
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref3
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref3
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref3
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref4
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref4
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref4
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref4
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref4
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref5
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref5
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref6
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref6
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref6
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref7
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref7
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref7
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref7
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref7
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref8
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref8
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref8
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref8
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref8
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref9
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref9
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref10
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref10
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref11
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref11
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref12
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref12
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref13
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref13
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref14
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref14
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref15
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref15
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref15
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref16
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref16
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref16
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref16
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref16
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref17
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref17
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref18
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref18
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref19
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref19
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref20
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref20
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref21
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref21
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref22
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref22
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref22


Fisheries Research 249 (2022) 106247

17

Punt, A.E., Butterworth, D.S., de Moor, C.L., De Oliveira, J.A.A., M. Haddon, M., 2016. 
Management Strategy Evaluation: Best Practices. Fish. Fish. 17, 303–334. 

Punt, A.E., Dunn, A., Elvarsson, B.P., Hampton, J., Hoyle, S., Maunder, M.N., Methot, R. 
D., Nielsen, A., 2020. Essential features of the next-gen integrated assessment: a 
perspective. Fish. Res. 229, 105617. 

Punt, A.E., Tuck, G.N., Day, J., Burch, P., Thomson, R.B., Bessell-Browne, P., 2021. The 
impact of alternative age-length sampling schemes on the performance of stock 
assessment methods. Fish. Res. 238, 105904. 

Sampson, D.B., 2014. Fishery selection and its relevance to stock assessment and fishery 
management. Fish. Res. 158, 5–14. 

Sampson, D.B., Scott, R.D., 2011. A spatial model for fishery age-selection at the 
population level. Can. J. Fish. Aquat. Sci. 68, 1077–1086. 

Smith, A., Sainsbury, K., Stevens, R., 1999. Implementing effective fisheries-management 
systems – management strategy evaluation and the Australian partnership approach. 
ICES J. Mar. Sci. 56, 967. 

Stewart, I.J., Martell, S.J.D., 2014. A historical review of selectivity approaches and 
retrospective patterns in the Pacific halibut stock assessment. Fish. Res. 158, 40–49. 

Thorson, J.T., Taylor, I.G., 2014. A comparison of parametric, semi-parametric, and non- 
parametric approaches to selectivity in age-structured assessment models. Fish. Res. 
158, 74–83. 

Xu, H., Thorson, J.T., Methot, R.D., Taylor, I.G., 2019. A new semi-parametric method 
for autocorrelated age- and time-varying selectivity in age-structured assessment 
models. Can. J. Fish. Aquat. Sci. 76, 268–285. 

K.M. Privitera-Johnson et al.                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref23
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref23
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref24
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref24
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref24
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref25
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref25
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref25
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref26
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref26
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref27
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref27
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref28
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref28
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref28
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref29
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref29
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref30
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref30
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref30
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref31
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref31
http://refhub.elsevier.com/S0165-7836(22)00024-8/sbref31

	Towards best practice for specifying selectivity in age-structured integrated stock assessments
	1 Introduction
	1.1 Selectivity and estimation methods
	1.2 Challenges and best practices for modelling selectivity
	1.3 Study objectives

	2 Methods
	2.1 General structure of the simulation study
	2.2 Operating model
	2.2.1 Population dynamics
	2.2.2 Data generation

	2.3 Estimation method
	2.4 Scenarios
	2.4.1 Experiment 1
	2.4.2 Experiment 2
	2.4.3 Experiment 3
	2.4.4 Experiment 4
	2.4.5 Experiment 5
	2.4.6 Experiment 6
	2.4.7 Experiment 7

	2.5 The performance metrics

	3 Results
	3.1 Experiment 1
	3.1.1 Tiger flathead
	3.1.2 Blue grenadier and school whiting

	3.2 Experiment 2
	3.3 Experiment 3
	3.4 Experiment 4
	3.5 Experiment 5
	3.6 Experiment 6
	3.7 Experiment 7

	4 Discussion
	4.1 Caveats and future work
	4.2 Conclusions

	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supporting information
	References


